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Abstract. The conjectured log-Brunn-Minkowski inequality says that
the volume of centrally symmetric convex bodies K, L ⊂ Rn satisfies
vol

(
(1−λ)·K+0λ·L

)
≥ vol(K)1−λvol(L)λ, λ ∈ (0, 1), and is known to be

true in the plane and for particular classes of n-dimensional symmetric
convex bodies. In this paper we get some discrete log-Brunn-Minkowski
type inequalities for the lattice point enumerator. Among others, we
show that if K, L ⊂ Rn are unconditional convex bodies and λ ∈ (0, 1),
then

Gn

(
(1− λ) ·

(
K+Cn

)
+0 λ ·

(
L+Cn

)
+

(
−1

2
,
1

2

)n
)
≥ Gn(K)1−λGn(L)λ,

where Cn = [−1/2, 1/2]n. Neither Cn nor (−1/2, 1/2)n can be removed.
Furthermore, it implies the (volume) log-Brunn-Minkowski inequality
for unconditional convex bodies. The corresponding results in the Lp

setting for 0 < p < 1 are also obtained.

1. Introduction

As usual, we write Rn to represent the n-dimensional Euclidean space,
endowed with the (Euclidean) inner product 〈·, ·〉. One of the cornerstones
of convex geometry is the Brunn-Minkowski inequality, which, in its classical
form, provides a relation between the notions of Minkowski addition and
volume of a pair of measurable sets. In particular, it states that given any
two non-empty compact convex sets K,L ⊂ Rn and any λ ∈ (0, 1), one has

(1.1) vol
(
(1− λ)K + λL

)1/n ≥ (1− λ)vol(K)1/n + λvol(L)1/n.

The Minkowski sum is the pointwise vector addition, i.e., A+B = {x+ y :
x ∈ A, y ∈ B} for any non-empty sets A,B ⊂ Rn, whereas the volume is
the standard Lebesgue measure. Furthermore, rA denotes {rx : x ∈ A} for
any r > 0. Despite the traditional formulation being for compact convex
sets (i.e., convex bodies), this hypothesis can be relaxed, and the result holds
true for arbitrary measurable sets.
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Generalizations and analogues of this inequality have proved to be a fruit-
ful field of study, involving other operations, spaces and measures, as well
as obtaining related inequalities and simpler proofs of already known ones,
being the isoperimetric inequality one of the most remarkable examples in
this respect. We refer the reader to [3, 12] for extensive survey articles on
the topic, as well as to the updated monograph [31, Chapter 9] and the
references therein.

Of particular interest for us is the Lp version of the Brunn-Minkowski
inequality. This was proved by Firey in [10], and states that for any two
convex bodies K,L ⊂ Rn containing the origin, and any p ≥ 1, one has

(1.2) vol
(
(1− λ) ·K +p λ · L

)p/n ≥ (1− λ)vol(K)p/n + λvol(L)p/n,

where K +p L is the only convex body whose support function is given by
(hK(·)p+hL(·)p)1/p, and where · is the p-scalar product, i.e., r·K = r1/pK for
any r > 0 (defined so for the sake of simplicity). We recall that the support
function of a convex body K is given by hK(u) = maxx∈K〈x, u〉 for all u ∈
Rn. It is easy to see that +1 is the standard Minkowski sum, and thus, that
this notion provides a uniparametric generalization of the Brunn-Minkowski
inequality. Additionally, it can be seen that K +∞ L = conv(K ∪ L), i.e.,
the convex hull of the union of the two bodies.

We note that the hypothesis for the sets in the previous definition, un-
like in the standard Brunn-Minkowski inequality, cannot be relaxed. Indeed,
compactness and convexity are required so that the support functions char-
acterize the sets (see, e.g., [31, Theorem 1.7.1]), and the bodies need to
contain the origin for the support function to be non-negative.

In order to elude this inconvenience, Lutwak, Yang and Zhang (see [23])
introduced an alternative pointwise definition which is valid for arbitrary
sets. Specifically, for any two non-empty bounded sets K,L ⊂ Rn and any
p ≥ 1, they defined

K +p L =
{

(1− µ)1/qx+ µ1/qy : x ∈ K, y ∈ L, µ ∈ [0, 1]
}
,

where q ∈ [1,+∞] is the Hölder conjugate of p, i.e., such that 1/p+1/q = 1,
and showed that when K and L are convex bodies containing the origin,
the definition coincides with the one of Firey. We note that if p = 1 then
q = ∞, and thus the above notion again reduces to the standard Minkowski
addition. The authors also proved the corresponding Lp Brunn-Minkowski
type inequality of the form (1.2) in this general setting.

It is desirable to extend the aforementioned notions to the case 0 ≤ p < 1,
and, in particular, to the case p = 0. A strong reason for this is that the
corresponding and recently conjectured Brunn-Minkowski inequality in this
setting for symmetric convex bodies, known in the literature as the log-
Brunn-Minkowski inequality, would be stronger than all other Lp versions
of the form (1.2) (see [5]). We recall that a convex body K is said to be
centrally symmetric if K = −K.
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Conjecture 1.1 (The log-Brunn-Minkowski inequality). Let K,L ⊂ Rn be
centrally symmetric convex bodies, and let λ ∈ (0, 1). Then

(1.3) vol
(
(1− λ) ·K +0 λ · L

)
≥ vol(K)1−λvol(L)λ.

However, it is easy to see that both definitions for K +p L given above
can be problematic when p < 1. Indeed, the former fails since the p-sum
of support functions is no longer sublinear, and thus, is not the support
function of any convex body; whereas for the latter, difficulties may arise due
to the fact that q would be negative. Therefore, the extension is obtained,
in the setting of convex bodies, by means of the so-called Wulff shape (see,
e.g., [31, Section 7.5]) determined by the support functions of the sets. In
particular, given two convex bodies K,L ⊂ Rn containing the origin and a
fixed λ ∈ (0, 1),

(1−λ)·K+pλ·L =
⋂

u∈Sn−1

{
x ∈ Rn : 〈x, u〉 ≤

(
(1− λ)hK(u)p + λhL(u)p

)1/p}
,

where Sn−1 is the unit sphere of Rn. It can be seen that this definition
coincides with the one of Firey when p ≥ 1. In the case p = 0, the previous
notion translates into the limit case

(1− λ) ·K +0 λ · L =
⋂

u∈Sn−1

{
x ∈ Rn : 〈x, u〉 ≤ hK(u)1−λhL(u)λ

}
.

Conjecture 1.1 was solved in the plane already in [5], both for p = 0 and 0 <
p < 1, and the corresponding equality cases were characterized. The authors
also noted that the central symmetry hypothesis cannot be removed. The
conjecture can be solved completely in the complex case as a consequence of a
generalization of the Blaschke-Santaló inequality due to Cordero-Erausquin,
as shown by Rotem in [26].

Since then, other symmetric scenarios have been considered. For the case
of unconditional bodies (i.e., bodies that have orthogonal symmetry with re-
spect to all the canonical hyperplanes) in general dimension, Conjecture 1.1
was solved by Saroglou in [29] for p = 0, whereas the corresponding ana-
log when 0 < p < 1 was shown by Marsiglietti in [24]. These results were
generalized by Böröczky and Kalantzopoulos in [4] to the setting of bod-
ies which have linear symmetry (not necessarily orthogonal) with respect to
n hyperplanes with linearly independent normal vectors. In a more func-
tional setting, Saroglou also showed in [30] that the conjecture implies the
corresponding inequality for any log-concave measure.

Furthermore, the question of the stability of Brunn-Minkowski type in-
equalities of this form has also been studied, and local results (with respect
to the Hausdorff topology) have been obtained, for instance, in [8, 9, 22, 25].

For further information on the log-Brunn-Minkowski, we refer the reader
to the previous manuscripts and the references therein.

Here we are interested in studying the discretization of inequalities of
the aforementioned type. As already stated, another common approach to
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extend the Brunn-Minkowski inequality is to consider alternative spaces and
measures. In this regard, the integer lattice Zn endowed with the cardinality
measure has been extensively studied. Ruzsa obtained in [27, 28] some of the
first strengthenings of the classical discrete Brunn-Minkowski-like inequality
|A + B| ≥ |A| + |B| − 1. These results were later improved by Gardner
and Gronchi in [13]. Recently, Hernández Cifre, Iglesias and Yepes Nicolás
obtained in [17] an inequality in this setting.

Another common approach is to work with arbitrary bounded sets and
then intersect them with the integer lattice. As it is common in the literature,
we shall denote by

Gn(K) = |K ∩ Zn|

the lattice point enumerator of any bounded set K ⊂ Rn. This approach
allows one to work with dilations of sets in a sensible way, since dilating a
finite set does not change its cardinality.

In this setting, Iglesias, Yepes Nicolás and Zvavitch showed in [21] that
for any non-empty bounded sets K,L ⊂ Rn and any λ ∈ (0, 1), one has

(1.4) Gn

(
(1− λ)K + λL+ (−1, 1)n

)1/n
≥ (1− λ)Gn(K)1/n + λGn(L)1/n.

A version with arbitrary linear coefficients does not follow immediately, un-
like for the volume, due to the lack of homogeneity. However, similar argu-
ments can show it (see [20]). This discrete inequality was extended to the
Lp setting in [18] by Yepes Nicolás and the authors, obtaining

(1.5) Gn

(
(1−λ) ·K+pλ ·L+(−1, 1)n

)p/n
≥ (1−λ)Gn(K)p/n+λGn(L)p/n,

for any p ≥ 1. Again, a version for arbitrary linear coefficients can also be
obtained with similar arguments. Further analogous discrete results were
obtained in [14, 19, 32].

Apart from the above-mentioned discrete Brunn-Minkowski type inequal-
ities, various discrete counterparts, for the lattice point enumerator Gn(·), of
classical results in Convex Geometry have been recently proven. Some exam-
ples of such results are Koldobsky’s slicing inequality [1], Meyer’s inequality
[11] or an isoperimetric type inequality [20]. We refer the reader to these
articles and the references therein for other connected problems, questions
and results.

In this paper we obtain discrete versions of the log-Brunn-Minkowski in-
equality (1.3), with methods that can also be easily adapted to the 0 < p < 1
setting (see Section 2), both for the lattice point enumerator, and for some
alternative measures.

The paper is structured as follows. Section 2 is devoted to establishing
the necessary notation and presenting the main results of the paper. In Sec-
tion 3 we prove the results concerning different point enumerators. Finally,
Section 4 deals with those results involving different measures.
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2. Notation and main results

To begin with, let us establish some notation, for the sake of simplicity.
For any t ∈ R and any non-empty set A ⊂ Rn, A≥t will represent the set

A≥t =
{
x = (x1, . . . , xn) ∈ A : xi ≥ t, i = 1, . . . , n

}
.

Given x, y ∈ Rn, we will write xy ∈ Rn to denote the point with coordinates
(xy)i = xiyi for all i = 1, . . . , n, while, if x ∈ Rn

≥0, x
λ will be the point

such that (xλ)i = xλi for any given λ > 0, i = 1, . . . , n. Analogously, we will
denote by AB = {ab ∈ Rn : a ∈ A, b ∈ B} for any A,B ⊂ Rn, as well as
Aλ = {aλ : a ∈ A} for any set A ⊂ Rn

≥0 and any scalar λ > 0. Finally, for
any bounded set K ⊂ Rn and any discrete set Λ, we will use the functional
GΛ(K) = |K ∩ Λ|, and for short we will write Gn(K) = GZn(K).

Our initial result provides a discretization of Saroglou’s result, i.e., a dis-
crete version of the conjectured inequality (1.3) for the lattice point enumera-
tor of unconditional convex bodies, as well as of (1.3) for centrally-symmetric
planar convex bodies. For the sake of brevity, the (closed) centrally sym-
metric unit cube will be denoted as Cn := [−1/2, 1/2]n.

Theorem 2.1. Let K,L ⊂ Rn be centrally symmetric convex bodies and let
λ ∈ (0, 1). If either K,L are unconditional convex bodies or n = 2, then
(2.1)

Gn

(
(1− λ) ·

(
K + Cn

)
+0 λ ·

(
L+ Cn

)
+
(
−1

2
,
1
2

)n)
≥ Gn(K)1−λGn(L)λ.

Furthermore, it implies the log-Brunn-Minkowski inequality (1.3) both for
unconditional convex bodies or when n = 2.

We observe that the Minkowski addition of the cube Cn in the left-hand
side of the latter inequality in each body cannot be, in general, avoided,
not even summing up a bigger cube instead of (−1/2, 1/2)n; similarly, the
Minkowski addition of (−1/2, 1/2)n is necessary (see Remark 3.1).

Next we introduce an operation closely related to the standard p-sum of
convex bodies, which was utilized in [29] and [24] for the Lp Brunn-Minkowski
inequalities discussed in the introduction. Given two non-empty sets K,L ⊂
Rn
≥0 and λ ≥ 0,

(1− λ) ·K ⊕p λ · L =
{((

(1− λ)xp1 + λyp1
)1/p

, . . . ,
(
(1− λ)xpn + λypn

)1/p) :

(x1, . . . , xn) ∈ K, (y1, . . . , yn) ∈ L
}
.

(2.2)

Again, the case p = 0 must be understood as its limit case, and thus,

(1− λ) ·K ⊕0 λ · L = K1−λLλ.

It was proved in [24] that (1− λ) ·K ⊕p λ · L ⊂ (1− λ) ·K +p λ · L for any
p ∈ [0, 1], which implies that, in order to obtain an Lp Brunn-Minkowski
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type inequality for p ∈ [0, 1], it suffices to consider the set (1−λ) ·K⊕p λ ·L
in the left-hand side (cf. (1.2)). Using this approach, Marsiglietti proved
that if K,L ⊂ Rn are unconditional convex bodies, λ ∈ (0, 1) and 0 < p < 1,
then

(2.3) vol
(
(1− λ) ·K ⊕p λ · L

)
≥Mλ

p
n

(
vol(K), vol(L)

)
.

Here, Mλ
p/n(·, ·) represents the (p/n)-mean of two non-negative numbers. We

recall next the definition of α-mean, where α is always a parameter varying
in R ∪ {±∞}. We consider first the case α ∈ R\{0}: given a, b > 0, let

Mλ
α(a, b) =

(
(1− λ)aα + λbα

)1/α
.

For α = ±∞ we set Mλ
∞(a, b) = max{a, b} and Mλ

−∞(a, b) = min{a, b}.
Furthermore, if ab = 0, we define Mλ

α(a, b) = 0 for all α ∈ R \ {0} ∪ {±∞}.
Finally, for α = 0 we write Mλ

0(a, b) = a1−λbλ (for a general reference for
α-means of non-negative numbers, we refer the reader to the classic text of
Hardy, Littlewood and Pólya [16] and to the handbook [6]).

Now, for any p > 0, we consider the change of variables ϕp : Rn
≥0 −→ Rn

≥0
given by ϕp(x)i = x

1/p
i for every i = 1, . . . , n. Analogously, we will denote

by ψa : Rn
≥0 −→ Rn

≥1 the change of variables given by ψa(x)i = axi , for any
a > 1 (so that ψa is bijective). These changes of variables will allow us to
establish the spaces and functionals with which we will obtain our results.
We will write Γp = ϕp(Zn≥0) and Λa = ψa(Zn≥0).

The following result for GΛa can then be shown.

Proposition 2.1. Let a > 1 and λ ∈ (0, 1), and let K,L ⊂ Rn
≥1 be non-

empty bounded sets with GΛa(K)GΛa(L) > 0. Then

(2.4) GΛa

(
(1, a2)nK1−λLλ

)1/n
≥ (1− λ)GΛa(K)1/n + λGΛa(L)1/n,

and the inequality is sharp.

In particular, a discrete log-Brunn-Minkowski type inequality for GΛa(·)
is obtained as a direct consequence:

Corollary 2.1. Let a > 1 and λ ∈ (0, 1), and let K,L ⊂ Rn
≥1 be non-empty

bounded sets. Then

GΛa

(
(1, a2)nK1−λLλ

)
≥ GΛa(K)1−λGΛa(L)λ,

and the inequality is sharp.

Next, we define an alternative (discrete) measure for which a result in the
same spirit as the previous one can also be proved. For any a > 1 and any
bounded set M ⊂ Rn, let

(2.5) µa(M) =
∑

z∈M∩Λa

φ(z),
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where the density function φ : Rn −→ R is given by

φ(z) =
n∏
i=1

zi.

We note that µa coincides with GΛa when the density function φ ≡ 1. We
will use a similar technique as the one used in [29] to approach the problem
in the discrete setting.

Theorem 2.2. Let K,L ⊂ Rn
≥1 be non-empty bounded sets, and let a > 1

and λ ∈ (0, 1). Then

anµa

((
a−1, a

)n
K1−λLλ

)
≥ µa(K)1−λµa(L)λ.

All the above results will be also extended to the case 0 < p < 1 (see
Theorem 3.1, Corollary 3.1 and Theorem 4.1).

3. Log-Brunn-Minkowski type inequalities for different point
enumerators

The proof of Theorem 2.1 relies on the following relations between the
volume and the lattice point enumerator of a convex body K ⊂ Rn:

Gn(K) ≤ vol
(
K +

(
−1

2
,
1
2

)n)
,

vol(K) ≤ Gn

(
K +

(
−1

2
,
1
2

)n)
.

(3.1)

The first inequality can be found in [15, (3.3)]. The second one, although
well-known, does not appear (up to our knowledge) in any classical reference;
a proof of it has been recently collected for completeness in [2].

Proof of Theorem 2.1. Clearly, if K ⊂ Rn is an unconditional convex body
(or just centrally symmetric), so is K+Cn. Thus, using (3.1) and Saroglou’s
result (inequality (1.3) for unconditional convex bodies) we obtain

Gn(K)1−λGn(L)λ ≤ vol(K + Cn)1−λvol(L+ Cn)λ

≤ vol
(
(1− λ) ·

(
K + Cn

)
+0 λ ·

(
L+ Cn

))
≤ Gn

(
(1− λ) ·

(
K + Cn

)
+0 λ ·

(
L+ Cn

)
+
(
−1

2
,
1
2

)n)
,

as required. The case of n = 2 is analogous but using the known log-Brunn-
Minkowski inequality (1.3) for centrally symmetric planar convex bodies.

In order to conclude the proof, we show that (2.1) implies (1.3) when K
and L are unconditional sets (respectively, when n = 2). It is a well-known
fact that, roughly speaking, the volume and the lattice point enumerator are
equivalent when the convex body K is large enough, i.e.,

(3.2) lim
r→∞

Gn(rK)
rn

= vol(K)
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(see e.g. [33, Lemma 3.22]). Moreover, it can be checked that, for any
non-empty bounded set M ⊂ Rn containing the origin,

(3.3) lim
r→∞

Gn(rK +M)
rn

= vol(K)

(see e.g. [2]). We also observe that, for any K,L ∈ Kn and any r > 0,

(1− λ) · (rK) +0 λ · (rL) = r
(
(1− λ) ·K +0 λ · L

)
.

Now, let K,L ∈ Kn be unconditional convex bodies (respectively, let n = 2),
and fix ε > 0. Then, using (2.1), (3.2) and (3.3) we get, on one hand,

vol(K)1−λvol(L)λ = lim
r→∞

Gn(rK)1−λGn(rL)λ

rn

≤ lim
r→∞

Gn

(
(1− λ) · (rK + Cn) +0 λ · (rL+ Cn) +

(
−1

2 ,
1
2

)n)
rn

= lim
r→∞

Gn

(
r
(
(1− λ) ·

(
K + 1

rCn
)

+0 λ ·
(
L+ 1

rCn
))

+
(
−1

2 ,
1
2

)n)
rn

≤ lim
r→∞

Gn

(
r
(
(1−λ) ·

(
K+[−ε, ε]n

)
+0λ ·

(
L+[−ε, ε]n

))
+
(
−1

2 ,
1
2

)n)
rn

= vol
(
(1− λ) ·

(
K + [−ε, ε]n

)
+0 λ ·

(
L+ [−ε, ε]n

))
,

(3.4)

which is valid for all ε > 0. On the other hand, one clearly has that

hK+[−ε,ε]n(u)1−λhL+[−ε,ε]n(u)λ ≤
(
hK(u) +

√
nε
)1−λ(

hL(u) +
√
nε
)λ

for any ε > 0 (for K and L fixed). Furthermore, since each sequence of
functions

(
hK +

√
nε
)
ε

and
(
hL+

√
nε
)
ε

converges uniformly to hK and hL,
respectively, and the function (x, y) 7→ x1−λyλ is uniformly continuous in any
closed rectangle [0, a] × [0, b], we get that

(
(hK +

√
nε)1−λ(hL +

√
nε)λ

)
ε
,

and so also
(
h1−λ
K+[−ε,ε]nh

λ
L+[−ε,ε]n

)
ε
, converges uniformly to h1−λ

K hλL. Then
[31, Lemma 7.5.2] ensures that the sequence of Wulff shapes associated to
the functions h1−λ

K+[−ε,ε]nh
λ
L+[−ε,ε]n , namely,

(1− λ) ·
(
K + [−ε, ε]n

)
+0 λ ·

(
L+ [−ε, ε]n

)
,

converges to (1−λ)·K+0λ·L in the Hausdorff metric. Finally, the continuity
of the volume yields

lim
ε→0

vol
(
(1−λ) ·

(
K+[−ε, ε]n

)
+0λ ·

(
L+[−ε, ε]n

))
= vol

(
(1−λ) ·K+0λ ·L

)
.

This, together with (3.4), shows (1.3) and concludes the proof. �
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Remark 3.1. We note that the cube Cn cannot be removed in the left-hand
side of (2.1), not even summing up a bigger cube instead of (−1/2, 1/2)n;
i.e., an inequality of the form

(3.5) Gn

((
(1− λ) ·K +0 λ · L

)
+ (−β, β)n

)
≥ Gn(K)1−λGn(L)λ

for all K,L ∈ Kn does not hold for any constant β > 0. Indeed, it suffices to
consider the sets K = [−a, a] and L = [−b, b] in R, where 0 < b < 1/2 and
a ∈ N is large enough in order for the inequality

a1−λ

((
1 +

1
2a

)1−λ 1
2λ
− bλ

)
> β +

1
2

to hold. Then, the above expression rewrites as

(3.6) 2a1−λbλ + 2β + 1 < (2a+ 1)1−λ,

and since
(
(1− λ) ·K +0 λ · L

)
+ (−β, β) = (−a1−λbλ − β, a1−λbλ + β), we

have

G1

((
(1− λ) ·K +0 λ · L

)
+ (−β, β)

)
≤ 2

(
a1−λbλ + β

)
+ 1.

Furthermore, G1(K) = 2a+ 1 and G1(L) ≥ 1 and, consequently, (3.6) con-
tradicts (3.5), as desired.

Finally, we see that the Minkowski addition of (−1/2, 1/2)n is also neces-
sary i.e., an inequality of the form

(3.7) Gn

(
(1−λ) ·(K+Cn)+0λ ·(L+Cn)+(−β, β)n

)
≥ Gn(K)1−λGn(L)λ

does not hold, in general, if 0 ≤ β < 1/2. To show it, we consider the sets
K = [−a, a] and L = [−b, b] in R, for fixed a, b > 0. Then, it is clear that

G1

(
(1− λ) · (K + C1) +0 λ · (L+ C1) + (−β, β)

)
≤ 2

⌊(
a+

1
2

)1−λ(
b+

1
2

)λ
+ β

⌋
+ 1.

Note that, if β < 1/2, we may choose 0 < λ < 1 such that (2b+1)λ < 2(1−β),
because 2(1−β) > 1 and limλ→0+(2b+1)λ = 1. This condition is equivalent to
(1/21−λ)(b+1/2)λ+β < 1, and a simple continuity argument then shows that,
for sufficiently small values of a, we also have (a+1/2)1−λ(b+1/2)λ+β < 1.
Consequently, in this case we have

G1

(
(1− λ) · (K + C1) +0 λ · (L+ C1) + (−β, β)

)
= 1,

which contradicts (3.7) when b > 1 because, in that case, G1(K) ≥ 1 and
G1(L) > 1.

Following the same argument as the one in the proof of Theorem 2.1,
but now using (2.3), one can get the Lp version of that theorem when 0 <
p < 1, i.e., a discrete version of Marsiglietti’s result. Again, neither Cn nor
(−1/2, 1/2)n can be removed from the inequality.
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Theorem 3.1. Let K,L ⊂ Rn be two unconditional convex bodies and let
λ ∈ (0, 1). Then, for any 0 < p < 1,

Gn

(
(1−λ) ·

(
K+Cn

)
⊕p λ ·

(
L+Cn

)
+
(
−1

2
,
1
2

)n)
≥Mλ

p
n

(
Gn(K),Gn(L)

)
.

Furthermore, it implies the Lp Brunn-Minkowski inequality (2.3) for uncon-
ditional convex bodies.

Next we will deal with the point enumerator GΛa(·) (and GΓp(·)). In order
to prove Proposition 2.1 (and the corollary afterwards) we need the following
simple properties of the functions ψa and ϕp, which will be useful throughout
the rest of the manuscript.

Lemma 3.1. Let K,L ⊂ Rn
≥1 be non-empty bounded sets and let 0 < λ < 1.

Then
i) GΛa(K) =

∣∣ψ−1
a (K) ∩ Zn

∣∣ and
ii) ψ−1

a

(
K1−λLλ

)
= (1− λ)ψ−1

a (K) + λψ−1
a (L).

Furthermore, if K,L ⊂ Rn
≥0 then, for any 0 < p < 1,

iii) GΓp(K) =
∣∣ϕ−1
p (K) ∩ Zn

∣∣ and
iv) ϕ−1

p

(
(1− λ) ·K ⊕p λ · L

)
= (1− λ)ϕ−1

p (K) + λϕ−1
p (L).

Proof. On the one hand

GΛa(K) = |K ∩ Λa| =
∣∣∣K ∩ ψa

(
Zn≥0

)∣∣∣ = ∣∣ψ−1
a (K) ∩ Zn≥0

∣∣ = ∣∣ψ−1
a (K) ∩ Zn

∣∣.
On the other hand

ψ−1
a

(
x1−λyλ

)
i
= loga

(
x1−λ
i yλi

)
= (1− λ) loga xi + λ loga yi

= (1− λ)ψ−1
a (x)i + λψ−1

a (y)i

for all x ∈ K, y ∈ L and all i = 1, . . . , n.
Completely analogous arguments yield properties iii) and iv). �

Now we can prove Proposition 2.1.

Proof of Proposition 2.1. We observe that the cube (−1, 1)n in inequality
(1.4) can be replaced by (0, 2)n due to the invariance by integer translations,
and so, we may apply it to the sets ψ−1

a (K) and ψ−1
a (L) to obtain∣∣∣[(1− λ)ψ−1

a (K) + λψ−1
a (L) + (0, 2)n

]
∩ Zn

∣∣∣1/n
≥ (1− λ)

∣∣ψ−1
a (K) ∩ Zn

∣∣1/n + λ
∣∣ψ−1
a (L) ∩ Zn

∣∣1/n .
Using both items i) and ii) of Lemma 3.1, and taking into account that
ψa
(
(0, 2)n

)
= (1, a2)n, we get (2.4).

To see that equality may be attained, we consider K = L = [1, am]n for
any m ∈ N, for which one has (1, a2)nK1−λLλ = (1, am+2)n and

GΛa

(
[1, am]n

)
= GΛa

(
(1, am+2)n

)
= (m+ 1)n. �
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Proposition 2.1 can be easily adapted to the 0 < p < 1 setting, now using
items iii) and iv) of Lemma 3.1:

Corollary 3.1. Let 0 < p < 1 and λ ∈ (0, 1), and let K,L ⊂ Rn
≥0 be

non-empty bounded sets with GΓp(K)GΓp(L) > 0. Then

GΓp

(
(1−λ) ·K ⊕p λ ·L⊕p

(
0, 21/p

)n)1/n
≥ (1−λ)GΓp(K)1/n +λGΓp(L)1/n.

4. A log-Brunn-Minkowski type inequality for an alternative
discrete measure

In order to show Theorem 2.2, we need a discrete analogue of the Prékopa-
Leindler inequality, a more general version of which was proved in [21]. In
order to state it we need further notation.

In line with [21], for any real function φ : Rn −→ R we consider the
extension given by

φ�(z) = sup
u∈(−1,1)n

φ(z − u).

This extension coincides with the Asplund product ? (also known as the
sup-convolution) of φ and the characteristic function χ(−1,1)n , since

φ�(z) = sup
u∈(−1,1)n

φ(z − u) = sup
u∈Rn

φ(z − u)χ(−1,1)n(u)

= sup
u1+u2=z

φ(u1)χ(−1,1)n(u2) =
(
φ ? χ(−1,1)n

)
(z).

For more information on the Asplund product we refer the reader to [31,
Section 9.5].

In [21, Theorem 2.2] the following discrete Borell-Brascamp-Lieb type
inequality was proved. It will be exploited in the proofs of Theorems 2.2
and 4.1:

Theorem A. Let K,L ⊂ Rn be non-empty bounded sets, λ ∈ (0, 1) and
−1/n ≤ α ≤ ∞. If f, g, h : Rn −→ Rn

≥0 are such that

h
(
(1− λ)x+ λy

)
≥Mλ

α

(
f(x), g(y)

)
for all x ∈ K and y ∈ L, then

∑
z∈M∩Zn

h�(z) ≥Mλ
α

nα+1

 ∑
x∈K∩Zn

f(x),
∑

y∈L∩Zn

g(y)

 ,

where M = (1− λ)K + λL+ (−1, 1)n.

The case p = 0 of the above theorem yields a discrete version of the
classical Prékopa-Leindler inequality. With this tool we can prove our result
for the measure µa.
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Proof of Theorem 2.2. To begin with, we clearly have

anµa

((
a−1, a

)n
K1−λLλ

)
= an

∑
w∈[(a−1,a)nK1−λLλ]∩Λa

φ(w)

≥
∑

w∈[(a−1,a)nK1−λLλ]∩Λa

sup
v∈(a−1,a)n

φ(v)φ(w).

Applying the change of variables defined by ψa, and using the fact that
ψ−1
a

(
(a−1, a)n

)
= (−1, 1)n and the symmetry of (−1, 1)n, the above expres-

sion rewrites into∑
z∈ψ−1

a ((a−1,a)nK1−λLλ)∩Zn

sup
u∈(−1,1)n

a
∑n

i=1 uia
∑n

i=1 zi

=
∑

z∈ψ−1
a ((a−1,a)nK1−λLλ)∩Zn

sup
u∈(−1,1)n

a
∑n

i=1 ui+zi .

Next, we denote by h(z) = a
∑n

i=1 zi , and use Lemma 3.1 to get that the last
sum equals to∑
z∈ψ−1

a ((a−1,a)nK1−λLλ)∩Zn

sup
u∈(−1,1)n

h(u+ z) =
∑

z∈ψ−1
a ((a−1,a)nK1−λLλ)∩Zn

h�(z)

=
∑

z∈[(1−λ)ψ−1
a (K)+λψ−1

a (L)+(−1,1)n]∩Zn

h�(z).

Now, if we consider the functions f = g = h, it is straightforward to
verify that they are under the conditions of the discrete Prékopa-Leindler
inequality (Theorem A for p = 0), that is, h

(
(1− λ)x+ λy

)
≥ f(x)1−λg(y)λ

for all x ∈ ψ−1
a (K) and y ∈ ψ−1

a (L), which yields∑
z∈[(1−λ)ψ−1

a (K)+λψ−1
a (L)+(−1,1)n]∩Zn

h�(z)

≥

 ∑
x∈ψ−1

a (K)∩Zn

f(x)

1−λ ∑
y∈ψ−1

a (L)∩Zn

g(x)

λ

.

Finally, performing the change of variables to f and g similarly to how we
did it for h, and putting it all together, we can conclude the result:

anµa

((
a−1, a

)n
K1−λLλ

)
≥

( ∑
x∈K∩Λa

φ(x)

)1−λ
 ∑
y∈L∩Λa

φ(y)

λ

= µa(K)1−λµa(L)λ. �
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In order to extend the previous result to the 0 < p < 1 setting, we need
to consider the density function φ : Rn −→ R≥0 given by

φ(x) =

(
n∑
i=1

xpi

)1/p

,

and the measure νp defined as

νp(A) =
∑

z∈A∩Γp

φ(z),

for any non-empty bounded set A ⊂ Rn.
Additionally, since ϕp can only be defined for points with non-negative

coordinates, the definition of φ� must be adapted to

φ�(z) = sup
u∈(0,2)n

φ(z − u),

which, due to the invariance by integer translations of the standard lattice
point enumerator, still allows one to apply Theorem A.

With these ingredients, and using a similar argument to the one employed
in the proof of Theorem 2.2, we can show the following result.

Theorem 4.1. Let K,L ⊂ Rn
≥0 be non-empty bounded sets and let λ ∈ (0, 1).

Then, for any 0 < p < 1,

νp

(
(1− λ) ·K ⊕p λ · L⊕p

(
0, 41/p

)n) ≥Mλ
p

np+1

(
νp(K), νp(L)

)
.

Proof. By definition we have

νp

(
(1− λ) ·K ⊕p λ · L⊕p

(
0, 41/p

)n)
=

∑
z∈[(1−λ)·K⊕pλ·L⊕p(0,41/p)n]∩Γp

(
n∑
i=1

zpi

)1/p

,

and since clearly(
0, 21/p

)n ⊕p {(21/p, . . . , 21/p
)}

⊂
(
0, 41/p

)n
,

the above expression can be bounded by

νp

(
(1− λ) ·K ⊕p λ · L⊕p

(
0, 41/p

)n)
≥

∑
z∈[(1−λ)·K⊕pλ·L⊕p(0,21/p)n]∩Γp

(
n∑
i=1

zpi + 2

)1/p

≥
∑

z∈[(1−λ)·K⊕pλ·L⊕p(0,21/p)n]∩Γp

sup
u∈(0,21/p)n

(
n∑
i=1

zpi + upi

)1/p

.
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Next, applying the change of variables defined by ϕp, and denoting by h(z) =(∑n
i=1 zi

)1/p, the last term rewrites into

∑
z∈

[
ϕ−1

p

(
(1−λ)·K⊕pλ·L⊕p(0,21/p)n

)]
∩Zn

sup
u∈(0,2)n

(
n∑
i=1

zi + ui

)1/p

=
∑

z∈
[
ϕ−1

p

(
(1−λ)·K⊕pλ·L⊕p(0,21/p)n

)]
∩Zn

sup
u∈(0,2)n

h(z + u)

=
∑

z∈
[
ϕ−1

p

(
(1−λ)·K⊕pλ·L⊕p(0,21/p)n

)]
∩Zn

h�(z)

=
∑

z∈[(1−λ)ϕ−1
p (K)+λϕ−1

p (L)+(0,2)n)]∩Zn

h�(z),

where the last identity arises from Lemma 3.1 iv).
Now, if we consider the functions f = g = h, it is immediate that the

condition h
(
(1 − λ)x + λy

)
= Mλ

p

(
f(x), g(y)

)
holds, and thus, Theorem A

yields ∑
z∈[(1−λ)ϕ−1

p (K)+λϕ−1
p (L)+(0,2)n]∩Zn

h�(z)

≥Mλ
p

np+1

 ∑
x∈ϕ−1

p (K)∩Zn

f(x),
∑

y∈ϕ−1
p (L)∩Zn

g(y)

 .

Finally, performing the change of variables defined by ϕp, it is easy to check
that the above expression is equal to

Mλ
p

np+1

(
νp(K), νp(L)

)
,

and so we can conclude that

νp

(
(1− λ) ·K ⊕p λ · L⊕p

(
0, 41/p

)n) ≥Mλ
p

np+1

(
νp(K), νp(L)

)
,

as desired. �
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